Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474543

RESUMO

Copper-organic compounds have gained momentum as potent antitumor drug candidates largely due to their ability to generate an oxidative burst upon the transition of Cu2+ to Cu1+ triggered by the exogenous-reducing agents. We have reported the differential potencies of a series of Cu(II)-organic complexes that produce reactive oxygen species (ROS) and cell death after incubation with N-acetylcysteine (NAC). To get insight into the structural prerequisites for optimization of the organic ligands, we herein investigated the electrochemical properties and the cytotoxicity of Cu(II) complexes with pyridylmethylenethiohydantoins, pyridylbenzothiazole, pyridylbenzimidazole, thiosemicarbazones and porphyrins. We demonstrate that the ability of the complexes to kill cells in combination with NAC is determined by the potential of the Cu+2 → Cu+1 redox transition rather than by the spatial structure of the organic ligand. For cell sensitization to the copper-organic complex, the electrochemical potential of the metal reduction should be lower than the oxidation potential of the reducing agent. Generally, the structural optimization of copper-organic complexes for combinations with the reducing agents should include uncharged organic ligands that carry hard electronegative inorganic moieties.


Assuntos
Antineoplásicos , Complexos de Coordenação , Cobre/química , Substâncias Redutoras , Antineoplásicos/química , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Complexos de Coordenação/química , Ligantes
2.
Org Biomol Chem ; 21(19): 4084-4094, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37128951

RESUMO

An efficient approach for the preparation of 3,5-dicarborane-substituted BODIPY conjugates was developed via the functionalization of 3,5-dibromo-8-pentafluorophenyl-BODIPY with neutral and anionic carborane S-nucleophiles. It was found that 3,5-dicarborane-substituted BODIPYs could be easily modified with a third carborane cluster using SNAr substitution reactions of the para-fluorine atom in the meso-pentafluorophenyl BODIPY substituent with the corresponding carborane S-nucleophile affording boron-enriched BODIPYs in good yields. The influence of bromine atom substitution with carborane moieties on the position of absorption and fluorescence bands and the fluorescence quantum yields of the prepared BODIPYs were analyzed. The crystal structures of BODIPYs 4 and 8 were investigated. Density functional theory methods (DFT wb97xd/6-31G* and wb97xd/lanl2dz) were performed to study the geometrical structures, electronic characteristics, the highest occupied and the lowest unoccupied molecular orbitals (HOMOs and LUMOs) and other chemical descriptors of the synthesized compounds.

3.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681725

RESUMO

Copper-containing agents are promising antitumor pharmaceuticals due to the ability of the metal ion to react with biomolecules. In the current study, we demonstrate that inorganic Cu2+ in the form of oxide nanoparticles (NPs) or salts, as well as Cu ions in the context of organic complexes (oxidation states +1, +1.5 and +2), acquire significant cytotoxic potency (2-3 orders of magnitude determined by IC50 values) in combinations with N-acetylcysteine (NAC), cysteine, or ascorbate. In contrast, other divalent cations (Zn, Fe, Mo, and Co) evoked no cytotoxicity with these combinations. CuO NPs (0.1-1 µg/mL) together with 1 mM NAC triggered the formation of reactive oxygen species (ROS) within 2-6 h concomitantly with perturbation of the plasma membrane and caspase-independent cell death. Furthermore, NAC potently sensitized HCT116 colon carcinoma cells to Cu-organic complexes in which the metal ion coordinated with 5-(2-pyridylmethylene)-2-methylthio-imidazol-4-one or was present in the coordination sphere of the porphyrin macrocycle. The sensitization effect was detectable in a panel of mammalian tumor cell lines including the sublines with the determinants of chemotherapeutic drug resistance. The components of the combination were non-toxic if added separately. Electrochemical studies revealed that Cu cations underwent a stepwise reduction in the presence of NAC or ascorbate. This mechanism explains differential efficacy of individual Cu-organic compounds in cell sensitization depending on the availability of Cu ions for reduction. In the presence of oxygen, Cu+1 complexes can generate a superoxide anion in a Fenton-like reaction Cu+1L + O2 → O2-. + Cu+2L, where L is the organic ligand. Studies on artificial lipid membranes showed that NAC interacted with negatively charged phospholipids, an effect that can facilitate the penetration of CuO NPs across the membranes. Thus, electrochemical modification of Cu ions and subsequent ROS generation, as well as direct interaction with membranes, represent the mechanisms of irreversible membrane damage and cell death in response to metal reduction in inorganic and organic Cu-containing compounds.


Assuntos
Apoptose/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Cobre/química , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lipossomos/química , Lipossomos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/química , Oxirredução , Superóxidos/metabolismo
4.
Beilstein J Org Chem ; 15: 2704-2709, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31807205

RESUMO

Maleimide-containing fluorinated porphyrins and chlorins were prepared based on the reaction of Zn(II) or Ni(II) complexes of 5,10,15,20-tetrakis(4-amino-2,3,5,6-tetrafluorophenyl)porphyrin and chlorin with maleic anhydride. Porphyrin maleimide derivatives were also prepared by the reaction of 5,10,15,20-tetrakis(4-azido-2,3,5,6-tetrafluorophenyl)porphyrinato Zn(II) or Ni(II) with N-propargylmaleimide via the CuAAC click reaction to afford fluorinated porphyrin-triazole-maleimide conjugates. New maleimide derivatives were isolated in reasonable yields and identified by UV-vis, 1H NMR, 19F NMR spectroscopy and mass-spectrometry.

5.
Anticancer Agents Med Chem ; 13(4): 639-46, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23343083

RESUMO

The tetrapyrrolic macrocycle and the functional groups at its periphery allow for a variety of modifications aimed at multifunctional therapeutic compounds. In particular, conjugation of boron polyhedra yields dual efficacy antitumor photo/ radiosensitizers. Structural optimization of these agents presumes the identification of macromolecules that bind and transport boronated tetrapyrroles. Using spectroscopic methods we demonstrated that methylpheophorbide a forms complexes with serum albumin and low density lipoproteins (LDL) whereas two diboronated derivatives, 13(2),17(3)-[di(o-carboran-1-yl)methoxycarbonyl]pheophorbide a and 13(2),17(3)-[di(1-carba-closo-dodecaboran-1-yl)methoxycarbonyl]pheophorbide a, were capable of binding to LDL but not to albumin. Molecular modeling showed a mode of interaction of methylpheophorbide a with the amino acid residues in the albumin's hemin binding site. In contrast, for diboronated derivatives such interactions are sterically hindered by boron polyhedra, in line with experimentally determined lack of complex formation with albumin. These data strongly suggest that LDL might be the preferred carrier for polycarborane containing methylpheophorbide a derivatives.


Assuntos
Compostos de Boro/farmacologia , Clorofila/farmacologia , Lipoproteínas LDL/química , Albumina Sérica/química , Sítios de Ligação/efeitos dos fármacos , Compostos de Boro/química , Clorofila/análogos & derivados , Clorofila/química , Humanos , Modelos Moleculares , Estrutura Molecular
6.
Org Biomol Chem ; 4(20): 3815-21, 2006 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-17024289

RESUMO

The conjugates of porphyrin macrocycles with boron-containing polyhedra are under investigation as agents for binary treatment strategies of cancer. Aiming at the design of photoactive compounds with low-to-zero dark toxicity, we synthesized a series of carboranyl and monocarbon-carboranyl derivatives of protohaemin IX using the activation of porphyrin carboxylic groups with di-tert-butyl pyrocarbonate or pivaloyl chloride. The water-soluble 1,3,5,8-tetramethyl-2,4-divinyl-6(7)-[2'-(closo-monocarbon-carborane-1''-yl)methoxycarbonylethyl]-7(6)-(2'-carboxyethyl)porphyrin Fe(III) (compound 9) exerted no discernible cytotoxicity for cultured mammalian cells, nor did it cause general toxicity in rats. Importantly, 9 demonstrated dose-dependent activity as a phototoxin in photodynamic therapy of M-1 sarcoma-bearing rats. In animals injected with 20 mg kg(-1) of 9, the tumours shrank by day 3 after one single irradiation of the tumour with red laser light. Between 7 and 14 days post-irradiation, 88.9% of rats were tumour-free; no recurrence of the disease was detectable within at least 90 days. Protohaemin IX alone was without effect, indicating that boronation is important for the phototoxic activity of 9. This is the first study that presents the synthesis and preclinical in vivo efficacy of boronated derivatives of protohaemin as phototoxins. The applicability in photodynamic treatment broadens the therapeutic potential of boronated porphyrins beyond their conventional role as radiosensitizers in boron neutron capture therapy.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Compostos de Boro/síntese química , Compostos de Boro/farmacologia , Hemina/síntese química , Hemina/farmacologia , Animais , Antineoplásicos/química , Compostos de Boro/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Hemina/química , Humanos , Fotoquimioterapia , Ratos
7.
Bioorg Med Chem ; 14(1): 109-20, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16185886

RESUMO

We have developed the synthesis of boronated porphyrins for potential application in cancer treatment, based on the functional derivatives of 5,10,15,20-tetraphenylporphyrin. Boronated amide derivatives starting from 5,10,15,20-tetra(p-aminophenyl)porphyrin and 9-o- and 9-m-carborane carboxylic acid chlorides were prepared. Also, the reaction of 2-formyl-5,10,15,20-tetraphenylporphyrin with closo-C-lithium-o- and m-carboranes, as well as with closo-C-lithium monocarbon carborane, yielded neutral and anionic boronated hydroxy derivatives of 5,10,15,20-tetraphenylporphyrin, respectively. Water-soluble forms of neutral compounds were prepared by deboronation of closo-polyhedra with Bu4NF into nido-7,8- and nido-7,9-dicarbaundecaborate anions. Monocarbon carborane conjugated with copper (II) complex of 5,10,15,20-tetraphenylporphyrin was active for a variety of tumor cell lines (IC50 approximately 5 microM after 48-72 h of exposure) but was inert for non-malignant fibroblasts at up to 100 microM. At low micromolar concentrations, this compound caused the death of cells that express P-glycoprotein and other mechanisms of resistance to conventional anticancer drugs.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Compostos de Boro/química , Resistencia a Medicamentos Antineoplásicos , Porfirinas/síntese química , Porfirinas/toxicidade , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/análise , Linhagem Celular Tumoral , Humanos , Porfirinas/química
8.
Curr Med Chem Anticancer Agents ; 3(6): 383-92, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14529446

RESUMO

A major challenge for cancer treatment is the preferential and irreversible killing of tumor cells and minimal damage of normal tissues, both in the site of the malignancy and in the body. The agents used in boron neutron capture therapy (BNCT) are supposed to have the following advantages over many conventional chemotherapeutics: 1) when irradiated with thermal neutrons, an unstable isotope (11)B is formed whose rapid decay yields local and a thermal effect; 2) because the free path of the released particles is close to the cell diameter, the tissues outside the tumor should gain less damage; 3) local radioactivity and heat should be harmful for cells that, in the course of their natural history, acquired the determinants of altered response to many toxic stimuli. However, a higher specificity of damage would be achieved if the drugs accumulate mostly in cancer cells rather than in non-malignant counterparts. Therefore, optimization of agents for BNCT presumes the design of chemicals with improved accumulation/ retention in cancer cells. In particular, carboranyl-substituted porphyrins, the stable conjugates of macrocyclic porphyrins with complex boron-containing polyhedra, are considered good candidates for BNCT due to their uptake by cancer cells and high boron content. Importantly, the proposed mechanisms of pharmacological effects of carboranylporphyrins make these compounds potentially appropriate for elimination of pleiotropically resistant tumor cells.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Porfirinas/química , Porfirinas/farmacocinética , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Desenho de Fármacos , Humanos , Neoplasias/patologia , Neoplasias/terapia , Porfirinas/uso terapêutico , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...